Wyzwania i nowe możliwości dla polskiej nauki w ośrodku FAIR

Zjazd Fizyków Polskich Gdańsk 1-7.09.2023

P. Salabura

Wydział Fizyki Astronomii I informatyki Stosowanej Uniwersytet Jagielloński, Kraków ✓ Infrastruktura badawcza
 ✓ Program naukowy
 ✓ Stan realizacji
 ✓ Polski wkład

FAIR: nowy międzynarodowy ośrodek badań w Darmstadt

FAIR : Facility for Antiproton and Ion Research

Stan: lato 2023

FAIR : powstanie , organizacja udział Polski

Podpisanie konwencji FAIR w Wiesbaden w 2010

Zakup akcji przez polskiego udziałowca w 2013

FAIR funkcjonuje jako spółka 9 udziałowców z radą nadzorczą FAIR Council (w projekcie bierze udział ponad 200 Instytucji z 53 krajów świata)

💥 partner stowarzyszony 🛌 aspirujący

- Polska posiada 2.3% udziałów i jest reprezentowana przez Uniwersytet Jagielloński koordynujący polskie wkłady • rzeczowe w FAIR finansowane przez MEiN (około 23.7 Mln Euro @2005) Ponad 95% środków jest przeznaczonych na wkłady rzeczowe w infrastrukturę badawczą i eksperymenty na FAIR https://fair.uj.edu.pl/
- Krajowe Konsorcjum Femtofizyka skupia 12 polskich uczelni i instytutów badawczych https://fair.uj.edu.pl/konsorcjum •
- FAIR jest wpisane na mape drogową europejskiej i polskiej infrastruktury badawczej •

FAIR: program naukowy

Atomic Physics, Plasma physics and applications

F(AIK

Compressed Baryonic Matter

CBM

NuSTAR

Nuclear STructure Astrophysics and Reactions

hadron structure with Antiproton ANihilation (at DArmstadt)

FAIR: struktura infrastruktury badawczej

Polski wkład rzeczowy w SIS100

Produkcja elementów systemu kriogenicznego dla SIS100 oraz nadprzewodnikowych kabli w Kriosystem sp. z o.o., Wrocław

Politechnika Wrocławska

 Produkcja BPL na ukończeniu

APPA (Atomic, Plasma Physics and Applied Sciences)

APPA White Paper NIMB 365 2015 680

Contents lists available at ScienceDirect BEAM INTERACTION WITH MATERIALS AND ATOMS Nuclear Instruments and Methods in Physics Research B journal homepage: www.elsevier.com/locate/nimb

APPA at FAIR: From fundamental to applied research

Th. Stöhlker^{a,b,c,*}, V. Bagnoud^{a,b}, K. Blaum^d, A. Blazevic^a, A. Bräuning-Demian^{a,e}, M. Durante^a, F. Herfurth^a, M. Lestinsky^a, Y. Litvinov^a, S. Neff^{a,f}, R. Pleskac^a, R. Schuch^g, S. Schippers^h, D. Severin^a, A. Tauschwitz^a, C. Trautmann^{a,f}, D. Varentsov^a, E. Widmannⁱ, on behalf of the APPA Collaborations

SPARC

Atomic Physics 430 naukowców z 26 krajów

HED Plasma Physics 200 naukowców z 11 krajów

BIOMAT

Biofizyka i badania materiałowe 150 naukowców z 20 krajów

Obszary badań

Precyzyjne testy QED w nieperturbacyjnym obszarze oraz pomiary stałych przyrody (SPARC)

Udział polskich grup badawczych

UNIWERSYTET IAGIELLOŃSKI

KRAKOWI

J

Uniwersyte

- Badanie plazmy atomowej w kontekście zrozumienia procesów syntezy w astrofizyce "warm-dense-matter" (HED)
- Nowe techniki radioterapii z użyciem wysokoenergetycznych wiązek jonów oraz badanie wpływu promieniowania na komórki (podróże kosmiczne) (BIOMAT)
- Badania wpływu intensywnego i twardego promieniowania na własności materiałów oraz procesów syntezy (MAT)

Fizyka atomowa na pierścieniach akumulacyjnych

- ✓ Wysokie stany ładunkowe (np. U⁹²⁺)
- precyzyjna selekcja prędkości oraz jonów (Q,M)
- ✓ olbrzymi zakres energii od 10⁻¹³ eV 5 GeV
- spektroskopia stanów elektronowych
- 🗸 🖌 pomiary czasów życia jonów, jader
- generacja attosekundowych silnych pól EM przez relatywistyczne jony

Pierścienie akumulacyjne

¹⁹²TI⁸¹⁺

0.67

0.62 0.57 0.52 0.48

0...= 3.37M e

127300 127400 127500 127600 127700 127800 127900 128000 128100 128200 freguency / Hz

single particle sensitivity

Precyzja selekcji

SPARC: QED w ekstremalnie silnych polach

SPARC bada fizykę atomów w ekstremalnie silnych polach elektromagnetycznych statycznych i bardzo szybko się zmieniających

Z=1; E_b = 13.6 eV, Z α ~10⁻², ΔE_{QED} ≈10⁻⁶eV

Wodoropodobny Uran

Z=92; E_b = 132 keV, Z α ~1, ΔE_{QED} ≈500eV

Struktura atomowa i dynamika przejść atomowych

- Precyzyjne testy QED : poprawki wyższego rzędu
- Struktura nad-subtelna (efekty jądrowe) w ciężkich atomach
- Przejścia atomowe indukowane prze ultraszybkie (attosekundowe) pola (relatywistyczne jony)
- Procesy wychwytu elektronów –odwrotne w czasie do jonizacji
- Układy kilku-eletronowe

 $\Delta E_{OED} = Z^4/n^3$

Przykład: pomiar przesunięcia Lambda w ESR

Przesuniecie 1s -Lamba w wodoropodobnym Uranie z przejść K-RR and Lya1

A. Gumberidze (D. Banaś. D. Sierpowski), et al., PRL 94, 223001 (2005) Research Highlights, Nature 435, 858-859 (16 June 2005)

Terapia nowotworowa przy użyciu jonów

Duża skuteczność hadronowej terapii nowotworowej • GSI było poligonem doświadczalnym (1980-90) dla centrum terapii w Heidelbergu HIT (od 1993)

Jak można zwiększyć jej skuteczność?

- Terapia typu FLASH
- oceniania jako najbardziej obiecujące odkrycie w radio-onkologii
- oznacza dostarczenie dużej dawki w bardzo krótkim czasie. Poprawa skuteczność terapii Conditions to obtain or miss the FLASH effect

- Terapia wiązkami radioaktywnymi np. ¹¹ C, ¹⁵ O dużych intensywnościach ($\sim 10^7$ p/s)
- Lepsza precyzja zasięgu (< 0.5 mm)
- Lepsza korelacja dawki i aktywności- online PET

space travel .cosmic radiation risk and shielding particle therapy radioactive beam FLASH therapy

efekt "flash"

Control

28 days post-irradiation

Durante et al., Radiother, Oncol., submitted

50 -

40-

20.

Conventional tradition FLASHiradiation

in lung

tissue 30-

Tumor

2

NUSTAR (Nuclear Structure Astrophysics and Reactions)

• Super FRS

Wiazki radiaktywne: produkcja i identyfikacja rzadkich izotopów

• HISPEC/DESPEC:

HIgh resolution in-flight gamma spectr. (HISPEC) and DEcay SPECtroscopy

• R³B

Reactions with Relativistic Radioactive Beams

- SHE: Super-Heavy Element Research
- ILIMA: Isomeric beams, Lifetimes and Massess at rel. energies in storage rings
 eksperymenty w których biora udział polscy fizycy

LaSpec: Laser Spectroscopy

- **ELISe** Electron-Ion Scattering in a Storage Ring
- MATS Precision Measurements of very shortlived nuclei using an Advanced Trapping System
- EXL Exotic nuclei studied in light-ion induced reactions at the storage ring

Około 660 naukowców z 32 krajów

Obszary badań

- Granice istnienia jąder (czasy życia, rozpady), poszukiwanie nowych izotopów
- Własności stanów podstawowych (masy, promienie jąder, deformacje)
- Struktura stanów wzbudzonych (poziomy energetyczne, rodzaje rozpadów)
- stany egzotyczne hiperjądra, halo neutronowe, ...
- reakcje syntezy ciężkich elementów i ich pochodzenie we wszechświecie (procesy w astrofizyce) oraz jąder superciężkich
- równanie stanu materii jądrowej w asymetrycznych (N/Z) systemach

NUSTAR Pochodzenie elementów we wszechświecie

W. Korten "FAIR Seminar" UJ`2021

Super Fragment Separator (SFRS)-produkcja izotopów

• Kołem zamachowym NUSTAR jest separator mas Super FRS *Radioactive Ion Beam facility*

Najbardziej energetyczna i intensywna RIB na świecie

Wiązka pierwotna SIS100- intensywne (3-5 10¹¹ !) wiązki ciężkich jonów o energii 1-2 GeV/u

Polski wkład rzeczowy w SFRS

Politechnika Wrocławska : Projekt oraz wykonanie systemu kriogeniczego (8 gałęzi-branches, kilkaset elementów) dla magnesów

SFR. Branch-T w fazie produkcji

Bardzo skomplikowany projekt ze względu na skalę, różnorodność oraz duże upakowanie elementów <u>wkład kluczowy dla First Science</u>

C.B.M (Compressed Baryonic Matter)

- dwa detektory na tarczach stacjonarnych o komplementarnych akceptancjach geometrycznych: CBM ($2^{0} < \theta < 25^{0}$), HADES(18⁰ $< \theta < 80^{0}$)
- wiązki z SIS100 protonów (do 30 GeV/u) i ciężkich jonów (do 11 GeV/u)
- pomiary przy bardzo dużej częstości interakcji do 5 MHz (x 100 RHIC)
- Czułość na detekcje rzadkich sygnałów : par pozyton-elektron, produkcji powabu (cząstek z kwarkami powabnymi)
- Struktura hadronów w reakcjach pp/pA dyskusj nad wspólnym programem z PANDA

➢ Badanie własności oddziaływań silnych (QCD) w nieperturbacyjnym obszarze w reakcjach relatywistycznych ciężkich jonów → diagram fazowy silnie oddziałującej materii w obszarze dużych gęstości

barionowych $\sqrt{S_{NN}} = 2 - 5 \ GeV/u$

- komplementarny do badań na Large Hadron Collider (LHC) i Relativistic Heavy Ion Collider (RHIC)
- EOS materii jądrowej: istotny dla zrozumienia własności gwiazd neutronowych,

Diagram fazowy QCD z eksperymentów URHIC

chemical potential μ (MeV)

1000

Przykłady istotnych pomiarów dla C.B.M

✓ Duże krotności dla FAIR
 Mechanizm produkcji czuła na własności
 materii (równanie stanu) i propagacji kwarków
 dziwnych

Pomiar T z widm promieniowana EM (dileptony) – tylko 2 pomiary HADES/Na60 "Krzywa kaloryczna" – sygnatura przejścia fazowego? Polaryzacji hiperonów Λ,Ξ Czuła na własności materii Sprzężenie krętu w reakcji do polaryzacji (spinu)

Proton ANnihilation in Darmstadt (PANDA)

Program badawczy arXiv:0903.3905v1

> UNIWERSYTET Jagielloński

Obszary badań

- Badanie struktury hadronów, w szczególności z zawartością kwarków dziwnych i powabnych, w reakcjach anihilacji proton-antyproton
- Poszukiwanie stanów egzotycznych (poza modelem kwarkowym).
 w anihilacji pp formacja wszystkich stanów kwantowych jest dozwolona
 w e⁺e⁻ tylko J^{PC} = 1⁻⁻
- Precyzyjny skan kształtów linii rezonansów (zdolność definiowana przez zdolność rozdzielczą HESR ∆E≈5 keV)
- Struktura protonu: rozkład ładunku, gluonów,zawartośc ciężkiego zapachu (powab)

Program badawczy przy użyciu wiązek protonów dostępnych w I fazie FirstScience+ dyskutowany wraz z CBM

Polskie wkłady rzeczowe w eksperymentach CBM/PANDA

✓ Kluczowe dla obu eksperymentów realizacje sensorów z systemami odczytu, procesowania danych przy użyciu wysoko zintegrowanej i programowalnej elektroniki (ASIC, FPGA, heterogeniczne platformy obliczeniowe oparte GPU, FPGA)

CBM : krzemowy detektor rekonstrukcji śladów (STS) Około 1.8 mln sensorów (granulacja 50µm), 16 000 układów ASIC"STS-XYTER", odporność na radiację

Oprogramowanie FPGA płyt odczytu (800) i procesowania danych (4.8 Gb/s/link)

PANDA : detektor słomkowy (Forward Detector) z odczytem Około 12 200 słomek, 200µm zdolność rozdzielcza, 1600 układów ASIC "PASTTREC", pomiar czasu dryfu w FPGA z precyzja 40ps

6 stacji FT, do 1.2 MHz/ słomkę, odczyt płyt 1 Gb/s/link

System kontroli tarczy protonowej (proton cluster jet target)

Podsumowanie

- FAIR jest unikalnym w skali światowej projektem otwierającym nowe możliwości badań w fizyce atomowej, jądrowej, materiałowej oraz ich aplikacji
- Projekt znajduje się w kluczowej fazie realizacji z pierwszym etapem First Science obejmującym budowę nowego akceleratora SIS100, separator mas (SFRS) z terminem realizacji 2028 rok. Wraz z infrastrukturą badawczą Compressed Baryonic Matter (First Science+) umożliwi badania wszystkich filarów FAIR (z wyjątkiem fizyki antyprotonów w eksperymencie PANDA)
- Polskie wkłady rzeczowe mają zasadnicze znaczenie dla realizacji tej konfiguracji
- Polskie grupy badawcze są aktywne w większości filarów badawczych FAIR. Wyzwaniem jest utrzymanie ich potencjału oraz dalsze rozszerzenia adekwatne do możliwości badawczych FAIR.

Serdecznie zapraszamy do udziału !!!

https://fair.uj.edu.pl/

Back-up

Terapia przy pomocy RIB?

В

BIOMEDICAL APPLICATIONS OF RADIOACTIVE

- W połączeniu z techniką PET umożliwi na znacznie lepsza kontrolę zasięgu (<0.5 mm w porównaniu do kilku mm)
 - \rightarrow poprawa korelacji dawki i aktywności

www.gsi.de/BARB

Value

Układ scalony SMX2.2 typu ASIC stworzony i testowany na AGH

Właściwości:

- Układ samo-trygerujący o niskiej poborze mocy
- 128 kanałów + 2 kanały testowe
- Rozdzielczość czasowa ~ 5 ns
- Dostarcza skonwertowane do postaci cyfrowej hity o 5-cio bitowej informacji spektroskopowej i 14-sto bitowej informacji czasowej
- Zakres liniowości do 15 fC
- Wysoka odporność na radiację

Budżet: ~600 000 EUR Status: ostatni etap testów: 90% układów zostało przetestowanych

i alamotor	r al ao
Process	180 nm CMOS MM/RF
Chip area	10.0 mm \times 6.75 mm
Channel number	128 + 2 test
ADC bits	5
Input charge frequency	max. 500 kHz
Power Consumption: Uninitialized Initialized	0.6 – 1.2 W/chip 1.023 W/chip @ I _d =2 mA 8 mW/channel
Offset spread of fast channel	1.12 mV rms / 0.015 fC rms (after correction)
Offset spread of ADC [fC]	0.09 (before correction) [39] 0.02 (after correction)
Gain Fast shaper (STS) Slow shaper (STS)	73 mV/fC 32.7 mV/fC
Gain spread: Fast shaper Slow shaper	0.8 % 0.5 % (after calibration)
Slow shaper peaking time [ns]	90 / 180 / 262 / 332
Yield	>91% (146 ASICs tested on PCBs)

Darameter

Produkcja wiązek radioaktywnychjonów (RIB)

GANIL, GSI/FAIR, RIKEN, MSU/FRIB

❑ Wszystkie nuklidy (T_{1/2}: 100ns)
 ❑ Szybkie wiązki (100 MeV/u, 0.5 c)

GANIL, SPES-LNL, CERN, TRIUMF

Długożyciowe izotopy (T_{1/2}: ms-s)
 Wiązki monochromatyczne o wysokiej intensywnoiści